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In  a previous contribut'ion to this journal (1) the 
author discussed a set of differential ecluat'ions which, 
under certain assumptions, enables us to compute t'lie 
dist,ribution of atmosphe,ric eddy e.nergy at  any t'ime, 
this distribution being given at, the time t = O .  A few 
integrals were derive,d in order to illust,rate t,he applica- 
tion of the theory under different, specified conditions. 
One of the examples referred t,o t,he overt,urniiig a t  tdie 
horizontal boundary between t,mo air laye,rs in c.onvect,ive 
equilibrium, the upper having a slightly lower pot,ent.ial 
temperat'ure than the 0t'he.r. In  view of t,he iniport,ant 
r81e this kind of convection plays over the North Ameri- 
can Continent (2) it se.emed justified to devote. more 
attention to its theoretical side. As a result, 8.n inte,gral 
was obtained, which det,ermines mathematically the 
overturning also for the case, where each of the t8wo super- 
posed air layers, taken separately, is in stable equilibrium. 

The method by which this solution was obtained was 
then applied t.0 the problem of local convection and gitve 
an integral which in a gemral way describes t,he rise 
of convection current's from a hcctt,ed surface. 

Finally, the differential eqi.iat,ions of convection were 
generalized in order to account for bemperature changes 
produc.ed by radiation. 

Numerous references will be made to the formulae in 
the original paper (I), these references a1w:tys beiilg in 
the form ( 1 ,  11, 13) where 1 signifies bhe paper, I1 the 
section, and 13 the number of tlie formula. The inat>he- 
matical symbols used below have tlie same meaning as 
in (1 ) .  

CONVECTION IN THE FREE AIR 

Suppose that, within a body of air (for instance G 
kilometers high and 100 kilometers square) t,he pot,ent,ial 
temperature (e) is distributed according to the law 
(1) e =  e, + ph 

where 8, the rate a t  which 0 increases upwrtrd, is a 
positive constant. The horizontal plane of reference 
h=O may be assumed to be situated somewhere in the 
free atmosphere, say 3 kilometers above sea level. 

Now assume that increasing sout,herly winds in the 
lower layers bring warmer air masses in below t,he plane 
h= 0. At the same time, nort'herly winds bring in colder 
air above. If the new air masses have the same degree 
of stability as the original, t'hen, in the absence of over- 
turning, we should have, for positive h - values, 

(2 1 e = em - A + gh, 
38389-27-1 

and for negat,ive values 

( 3  ) e =  e,+ A+ph 

Thus t,he level h = O  is characberized by a sudden tem- 
perature drop of 2 A .  Now it is obvious t,hat such a 
sudden drop can never persist for any length of time. 
Ininiediate,ly t,he colder air mass is brought in above the 
plane h = 0, t,urbuleiic,e and overburning will set in and 
spread t)he bemperature drop 2 A  over a small vertical 
distance. However, in order to facilitate the theoretical 
treatment, we shall here assume that a t  the time t = O  
the pot,ential temperature is distributed according to (2) 
and (3) and that at this moment the overturning begins. 
Let the thickness of the intermediate turbulent layer at 
any time be 3 H ;  H therefore is a function of t to be 
determined lat,er. The turbulence within the layer 2 H  
is accompanied by heat convection. The simultaneous 
changes in the disbribution of kinetic eddy energy per 
unit mass ( E )  and pot>ent,ial temperature (e) are inter- 
relat'ed through the t>wo equations (1, 11, 53). As 
point,ed out in ( I ) ,  solut'ions of these equations are not 
easily obt,ained. For the special case = 0 (convective 
e,quilibriurn in t,he undisturbed airmasses) a simple in- 
t,egral was, however, derived. In  tlie general c.ase j3 > O  
this solution is not valid; e will no longer, as in (1, 11, 
66), follow a simple linear law within tlie turbulent layer 
hut has ti more c.omplicabed analytical form. If, how- 
ever, we assume that tlie turbulent mixing is strong 
enough t.o produce an approximate linear distribution of 
e, the second equat,ion (1, 11, 53) can be disregarded. 
The distributioii of E between h = - H and h = + H is 
then debermined solely by 

Within t,lie same lityer 8, according to our assumption, is 
given by 
(5 ) 8 = om - ah 

Since e must be continuous for h= + H ,  we have 

or 
68 A - ~ H  

a=--=- 6h H 
1 
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If the variations of 0 in the last number of (4) are neg- 
lected and the constant 

C' 9 ! 2 = z e ,  

is introduced, then ( 4 )  reduces to 

( 9 )  

Now assume for E a solution of a type already disc,ussed 
in ( I ) ,  namely 

(10)  
If we denote differentiation with respect to r by a prime 
('), then we must have 

E= k ( H  - h2) 

( 1 1 )  (kH2)' - k'h2= - 2k2H2+ 6k2h2 + q a k ( P -  h2) 
Since this equation must hold for any h- values, 
(12 )  (kH2)'= -2k2H2+pakH2 

and 

(13)  - k' = Gk2- acrk 
Multiplying the second equation by H 2  and adding it to 
the first, we obtain 
(14)  (H')' = 4kH2 

or 
1 k=- H' 

2H' 

Introducing the expressions fork and a in (13 ) )  we obtain 

we transform (17)  to 

The integral of this equat,ion is 

If we assume that the velocity of t,l@ overturning is 
b i t e  at t = O ,  then A must vanish. Thus 

The turbulent layer will therefore never exceed the limits 
38 f H,= -c-- The more stable the original stratifica- 2A 

tion, the less the turbulent layer will spread. 

The maximum value of P (for h=O) is a t  any time 

This function is at  a maximum when 

(34)  
Then 
( 2 5 )  3A B H = -  4 8  and a=- 3 

Integrating (10) between the limits 
expression for the total eddy energy, 

f H we obtain an 

By means of (15)  and (21) ETotal can be expressed as a 
function of H (and thus of r ) .  We find, as would be 
anticipated, that the total eddy energy will increase, 
until the t,eiiiperature lapse rate within the turbulent 
layer has reached the adiabatic. At that moment all 
the available potential energy of the stratification has 
become converted into kinetic energy. From then on, 
the eddies, continuing to diffuse upward and downward 
while the lapse rate decreases, work against gravity, 
transforming kinetic ener into heat and potential 

the convective layer has reached the limits f H-, this 
latter energy conversion is completed and the atmosphere 
again at  rest. 

energy. After a the0retic.a YT y infinitely long time, when 

CONVECTION OVER A HEATED SURFACE 

Now let us try to obtain a solution of the following 
problem: An air-mass is originally at  rest and in stable 
equilibrium. The potential temperature is distributed 
according to the formula 

where 8 is a positive constant and h the height above 
ground. Suddenly (for t = O )  the surface is heated to 
eo+ A and then kept at  a constant temperature. The air 
layer close to the surface will immediately assume the 
temperature Bo+ A. Thus the lowest layers will be char- 
acterized by a superadiabatic lapse rate, which will give 
rise to turbulent overturning and convection currents. 
Within the turbulent layer the lapse of potential tem- 
perature will decrease gradually from a strong positive 
value close to the ground. To simplify the problem we 
shall, however, in this case also, assume that 0 within 
the convective layer is distributed according to a linear 
law, 

(26)  e = e, + gh, 

(27)  e=e,+ A - ~ I L . ~  

1 It is easily proved that this assumption can only be approximately true. The con- 
vection current of heat through any level is determined by 

-c,.c.E. $P 
where e signifles the specific heat at constant preasure. In caae of surface conveotlon 
there is steady flow of heat from the earth to the atmosphere. The above erpresslon 
does therefore in general not vanish for h=O. Thus we must have, Ln the vicinity of 
grOmd, 

Ede=p+vh+. 6h . . bI.0) 
Now we have proved ( I ,  III, 3), that &close to the suriaoe can'be developed in the form 

E=K JF(I+terms of %her order) 
Thus, for small A-values, 

ao f i  + Y J K + . . .  ah=.Jr I 

or 

B=Comtant+~f i+ .  . . . 
B in the surface layer therefore varies proportional to 6 
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To compute a we have, since 0 must be continuous, 

(28) 60 + A -  a H = &  + BH 

or 

(29) 
A - B H  

H a=- 

H i s  the height of the turbulent layer. 

In (1, 111) we have proved that E close to ground 
must be proportional to ,/E. Thus it is most natural 
to introduce a function P ( x )  by 

(30) 

.where 

E = 5.  P (x)  ) 

(31) X = J E  

%e equation (9) then changes into 

or 

(33) 

bsume for P a solution of the form 

(34) P=a-ba? 

where a and b are functions of T. 
inserted in (33) we obtain 

636) 

a and b must therefore fulm the equations 

If this expression is 

(4a' - 4aqa)% - (4b' - 4aqb)x6= - 15aW + 24bV 

15 
4 a'-aqa= -- ab 

Multiplying the first of these equations by 6, the second 
by a and then subtracting, we obtain 

a'b-ab'= -- 15abP+6a62 
4-38) 4 

or 

(39) 

Since E, and hence also P,  must vanish for h = H  or 
z = 1/z, we have 

a - H ;  
(40) 5-  
Thus, from (39) it follows that 

2 -  (41) a = 3  J H -  H' 

E = -  2 La' 
3 H  

Inserting the expression for 6 in (37) we obtain, after 
certain reductions, 

(43) AH" - a ( ~  - P H )  H' + 3 HI2 = 0 

Changing the independent variable we may write 

(44 )  

The equation (43) then takes the form 
6 8 '  (45) H m + 3 H ' = y  ( A - P H ) ,  

which can be integrated and gives 

Since H' is finite for H =  0, we must have A = 0. 
ing once more we obtain 

Integrat- 

(47) 

Using (41)) (42), and (34)) we write tho solution for E in 
the form 

The equations (47) and (48) constitute the solution of 
our problem. 

The masimum value of E is found at  a given time the 
height 

(49) 

After a few simplifications we find that E,,, has the 
form 

(50) Em,, = 

~ = 0 . 3 9 H  H 

H e  H' 

This function of 7 has its maximum value for 

and 

(53)  

2 A  H = - -  
3 8  

B 
2 

a=- 

Thus E,,, reaches its greatest value already before the 
lapse rate has become adiabatic. The reason for this is 
obviously to be found in the increasing dissipation of 
eddy energy at  the surface. This dissipation, when H 
passes a certain value, will exactly balance the produc- 
tion of eddies, whidi decreases with the decreasing insta- 
bility of the convective layer. 

An example of the solution (48) h& been computed 
and plotted in the figure. The following numerical 
constants have been used: 

- = l ,  q = p = 3 . 3 ,  P=2.10-b, A = 6  centigrades. a 00 

C 

Under these assumptions it is found that the maximum 
height reached by convection is the 4 Kilometers level. 
In the figure the thin lines give the distribution of E 
from time to time, while the thick line shows the traveling 
of Ems,. It might be worth emphasizing that the solu- 



4 . MONTHLY WEATHER REVIEW JANUARY, 1927 

tion (48) is independent of the numerical value of the 
constant a and contains only +,he ratio -9 to which it is 
directly proportional. The const,ant a occurs only as 
multiplied by t in (47). A good determination of a, is 
therefore necessary if we wish to determine the velocity 
with which c,onvection rises. 

Now, assume that the atmosphere was in indifferent 
equilibrium (0 = 0 )  until the time t = 0 ,  at which moment 
the surface was heated A degrees. Convection will then 
start and it may be assumed that E approximately 
follows the law just derived, 

C 

U 

(54) 

In this special c,ase H has the value 

(55) 

It is now possible to c,omput,e, under the assumption just 
made, the temperature distribut'ion within the c.onvective 
layer. According to ( l , I I ,  53b) 

In this equation we have, for sake of simplicity, assumed 
c=a. One finds as a solution of this equation 

Here we have denoted the constant of integration by u. 
As earlier pointed out, the transport S of heat from 

the ground to the air is at  any moment given by 

or, from (54), (55), and (57), 

(59) s = c,. c .  @(a+ 9 ;J 
Since this transport, can not be infinite at  the time t=O, 
the const,ant u must obviously vanish. Thus we obtain 

e=eo+ A -  & A 

s = c,. c - PAZ - 
9 

From (55) and (61) it is theoretically possible to 
compute the flow of hest t,hat produces a convection 
current of given intensity. However, the following must 
be kept in mind. In deriving the temperature distribu-' 
tion (60) we made use of the equation (56)) according to 
which all temperature changes are due to convective 
transport of heat. Differences between absorbed and 
emitted radiation are thus not taken into account. As 
a matter of fact, part of the convection-producing flow 
of heat is conveyed to the atmosphere not through surface 
conduction, but through escess absorption, in the lowest 
air layers, of the long wave radiation from the surface. 
The more evenly this absorption is distributed throughout 
a thick layer, the less effective it will be in creating con- 
vection currents. The solution here presented therefore 
rather gives an upper limit for the convection produced 
by a given flow of heat. Writing (55) in the form 

we can eliminate A between this formula and (61). 
result is 

The 

(63) 

Thus the ratme at which the convection current rises is 
proportional to the square root of the flow of heat con- 
veyed to the lowest air layer. 

It was shown in (1))  that the constant a (or c )  generally 
is of the order of niagnitude to -2, and in a numerical 
calculat,ion t,hen made u was assumed to be equal to 

This later value seems, however, somewhat low. 
To obtain en idea of the magnitude of the quantities dis- 
cussed let us give a numerical example illustrating (61) 
and (63). We assume 

p=3.3,  

= 10-3 
A = 4 centigrades 

C, = 0.24 
Then 

meters gm. cal. 
cm.a/min. aH-i58.4 -- - . 103 a ~ , s = 84.48 c dt hour 

Assuming in these expressions a value for a (or c )  about 
half-way between the limits given above, a = c = 4.10-3, 

we find for dt and S the numerical values d H  

meters gm. cal. 
.2,min. d_H= at 634 hour , S = 0.34 
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If the surface of the earth radiates as a black body 
then it would a t  a temperature of 27' C or 300° absolute 
send out 0.67 cm.2,min. - Thus, according to the above 
example, the heat carried off by convect'ion is about 50 
per cent of the amount sent out through radiation during 
the same time. The rate at  which the comput,ed con- 
vection current rises seems to agree well with what we 
know about the growth of cumulus. 

In the general case, where the eddy-producing flow of 
heat is transferred to the atmosphere partsly through 
radiation, the equation (1, 11, 53b) has to be suit,ably 
modified. The relation between absolute temperature 
(2') and potential temperature (e) is, as well known, 

gm. cal. 

Here p is the actual pressure, Po the standard pressure 
and K the ratio between the two specific heats. The ex- 

K- 1 
K 

ponent ~ has the numerical value 0.29. Multiplying 

equation (1, 11, 53b) by (A) and assuming t8hat the 
pressure remains constant, we obtain with t,he aid of (64) 

0.29 

p - = c , . ( & )  6T 0.29 6 h [ E $ ]  6 
6t 

If this equation is multiplied by cD, the left member 
gives the amount of heat per unit volume needed t,o in- 
crease the temperature of the air 3i per second. Accord- 
ing to (65) this heat is furnished solely by convection. 
If, however, per unit time and mass the air absorbs A 
calories more than it emits, t,hen we have to add to bhe 
right member the term PA. Thus 

6T 

The equations determining atmospheric convection 
now take the more general form 

The quantity A, being the difference between emission 
and absorption, is a function of T and hence also of R. A 
complete solution of the convection problem is possible 
only if to the equations (68) and (69) are added Sc,hwarz- 
schdd's differential equations for the radiat,ion c.urrents 
penetrating the atmosphere. In such a general formula- 

tion however, the problem presents insurmountable math- 
emathical difficulties. 

If the last term in (69) is a known function of the height 
then the equations are easily integrated for the stationary 
c.ase, when - and :vanish. We leave that to the reader. 

Recently L. Reller (3) has made an extremely inter- 
esting attempt to derive a complete system of character- 
istics for atmospheric turbulence; in other words, a sys- 
tem of quantities which, wit,h a sufficient degree of accu- 
racy, describe statistic.ally this turbulence, and of such a 
nature that if given at  the time t = O  they may be com- 
puted for any subsequent time. Keller's attempt is 
based upon a generalization of Osborne Reynold's method 
for deriving the additional stresses within a turbulent 
moving fluid. It is applied to the case of adiabatic 
movement. The problem can be solved only under cer- 
tain simplifying assumptions and then leads to a system 
of 35 functional-differential equations of a rather com- 
plicated nature. 

What we have done in this and the preceding paper is 
obviously to reduce the characteristics of atmospheric 
turbulence for the case of pure convection, with no hori- 
zontal mean wind components, to two quantities, E and 
e. To be sure, the way in which we have made this re- 
duction may, from a purely the.oretical point of view, be 
seriously criticized. It seems, however, from the mte- 
grals already derived that the theory is very fertile and 
in a general way well describes several phenomena related 
to atmospheric turbulence. Little attention need be paid 
to the numerical values arrived at  in this as well as in the 
preceding paper. The quantitative results are dependent 
upon several rather arbitrary assumptions. Their va- 
lidity or nonvalidity does not in any way affect the ap- 
plicability of the theory in its general form. 

It is extremely desirable that parallel with this semi- 
empirical line of work an attack be made on the turbu- 
lence roblem from the pure theoretical side in the sense 

study. A confrontation of the two theories 
may lead to the introcluct,ion of new and useful con- 
cep tions. 

6E 
6t  
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